Higgs WG Analysis Preparation

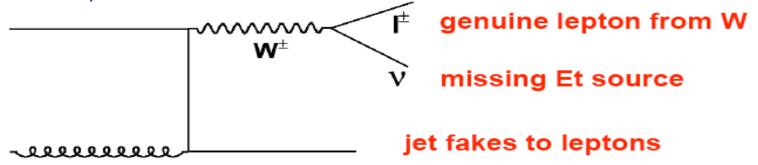
K. A. Assamagan, S. Horvat, M. Kado,B. Mellado, W. Murray, A. NisatiC. Potter, M. Schumacher, J. Tanaka

For the Higgs Working Group

The full 2009/10 sample (200 pb⁻¹)

- Spring 2010, few pb⁻¹: mainly calibrations and understanding of the detector performance. Collaborations with Trigger and CP Groups will be important
- Summer 2010, a few tens of pb⁻¹: Expect improved detector and trigger performance
- Full sample ~ 200/pb: Expect improved detector performance
 - Maintain connection with performance groups
 - Involvement in calibration, data quality and luminosity estimation
 - First Higgs Papers on 2009/2010 data
- Tight connection with SM and top groups
 - − JOINT meetings with SM subgroups: e.g., HSG1 ($H\rightarrow \gamma\gamma$)/Direct Photon, HSG2 ($H\rightarrow ZZ$) and HSG3 ($H\rightarrow WW$)/SM electroweak and dibosons, etc
 - Common analysis strategies
 - Background cross-section measurements
 - Simple cut-based analyses. Define signal-like regions and primary control samples
 - Little reliance on MC. Control sample definitions for data-driven background estimation
 - Signal selection efficiencies and impact of systematic uncertainties.
 Systematic error propagation
 - Sensitivity and N x σ(SM) exclusion at 95% CL

Common Analysis Strategies

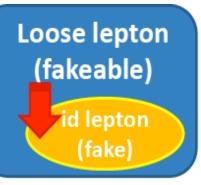

- Instead of various groups (of a few people) doing in parallel same analysis from the beginning to the end, for example H→ WW:
 - Identify major analysis tasks (e.g., required for H→WW)
 - Interested groups to contribute constructively to analysis tasks
 - Toward a common analysis (e.g., for H→WW)
- Encourage different methods to extract background levels from the same process, directly from real data. This data-driven methods will help to have a cross-validation of the methods themselves, and will allow to estimate systematic effects for each of them. The analysis is a cut based analysis where cuts will be optimized when data will be available (using MC simulation also).
- Focus on better understood simple cut based analyses for early data
 - Acceptance challenge: converge on commonly agreed upon cut flow to common analysis. Example: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWW
- Common analysis tools in SVN repository

Background estimation from data

Extraction of W+jets background in H→WW (→II+MET)
 +nj channel

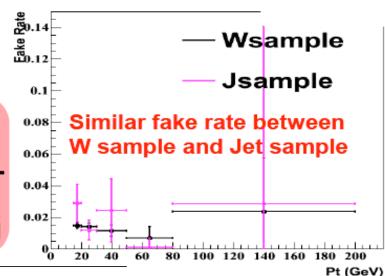
HSG3

 W+jets background from one genuine lepton and one fake lepton. It also has an intrinsic MET


- Hard to estimate jet -> fake lepton contribution for MC. W+jets cross section has large theoretical uncertainties
- Use data driven background estimation methods, some examples:
 - Extrapolation method from loose leptons using di-jet events (fakeable objects)
 - Based on γ+jets events
 - Subtraction method
 - Estimate of opposite sign contribution from same sign
 - Estimation of Z→II background in H→WW (→II+MET)+0j

4

Background estimation from data:


Fakeable objects

HSG3

Fake Rate Definiton

$$f_{lep} \equiv \frac{N_{id\ obj}}{N_{fakeable\ obj}}$$

How to apply

N_{oneid(genuin)+onefake}=

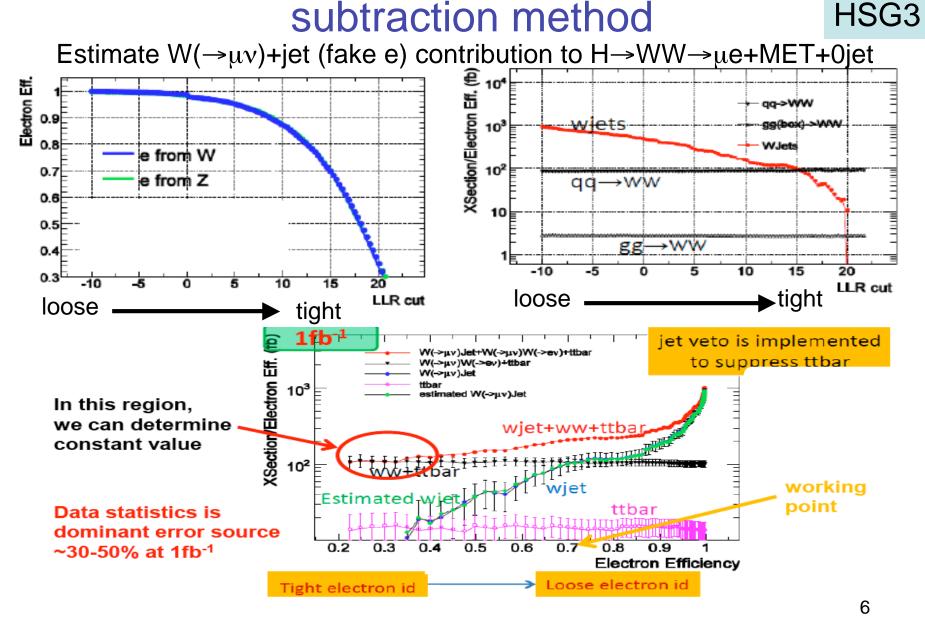
 f_{lep}

W+jets fake candidate

√ oneid(genuin)+onefakable

Number of W+jets Fake background Estimate from jet triggered data Apply to signal data (lepton trigger sample)

For example


Good agreement with MC expectation

$$N_{\text{fake}}^{\text{ee-ch}} = f_{\text{e}} \times N_{\text{oneide+onefakablee}}$$

Expected event after all selection	MC expectation (Counting)	LL method (f _e from di-jet)		
ee-ch	3.4± 1.2	5.4±2.2		

200pb⁻¹

W+jets background estimation from data: subtraction method HS

Estimated W+jet (green curve) consistent with W+jets from Truth (blue curve)

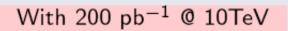
H→WW(→II+MET) + njets:

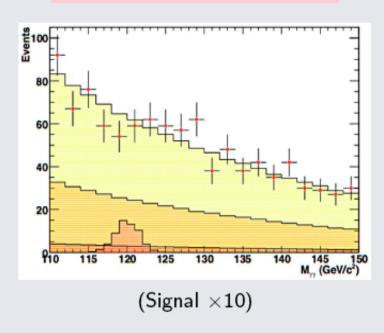
HSG3

Aiming at producing a sensitivity plot with all the systematics before data taking starts; the group is working towards that goal.

- Exclusion: background systematics included from control samples but no systematic error on signal normalization.
- Discovery significance: still preliminary. Need some time to have systematics under control in all channels

This does take into account also ee and $\mu\mu,$ not only $e\mu$ sub-processes.


$H\rightarrow\gamma\gamma$ in the early going ...

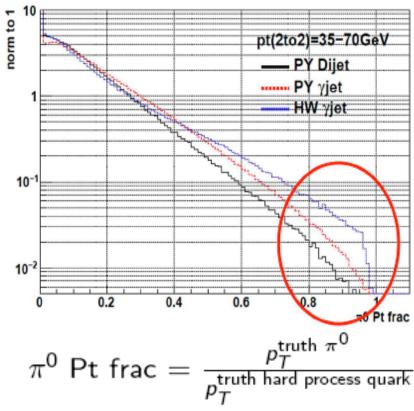

• Using inclusive analysis cuts
$$\begin{cases} |\eta| < 1.37, \quad 1.52 < |\eta| < 2.37 \\ p_T^1 > 40 \text{ GeV and } p_T^2 > 25 \text{ GeV} \end{cases}$$

HSG1

Signal	120 GeV $\pm 1.4\sigma$
gg fusion	12.1 fb
VBF Higgs	1.5 fb
WH, ZH	0.8 fb
tτ̈Η	0.1 fb
Total	14.5 fb

Background	120 GeV $\pm 1.4\sigma$
$\gamma\gamma$ irreducible	401 fb
γj reducible	209 fb
<i>jj</i> reducible	29 fb
Total	639 fb

 \Rightarrow Only \approx 3 signal events expected

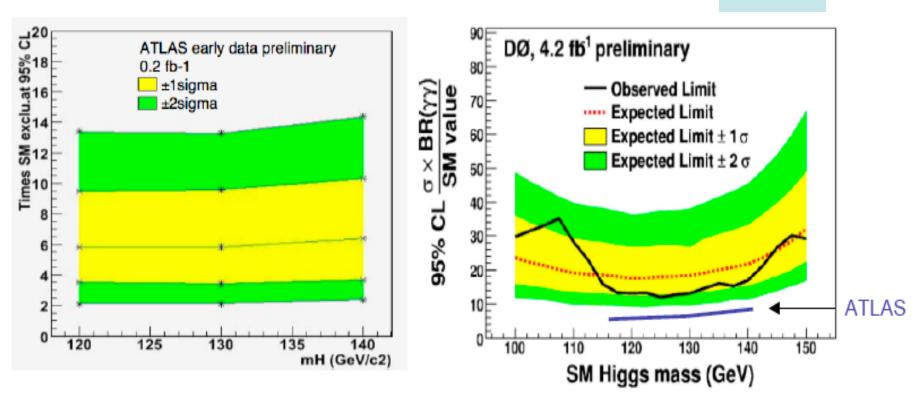

pprox 128 background events

$H\rightarrow\gamma\gamma$ in the early going ...

 Good connection between Higgs sub-group HSG1 (γγ), direct photon sub-group and egamma performance

group

- − Of interest to $H \rightarrow \gamma \gamma$:
 - Conversion
 - Calibration
 - Identification efficiency and purity
 - Software preparation
- Jet fragmentation to π^0
 - Differences in quark from di-jets and γ/jet observed
 - π⁰ depends on generator used and on process considered

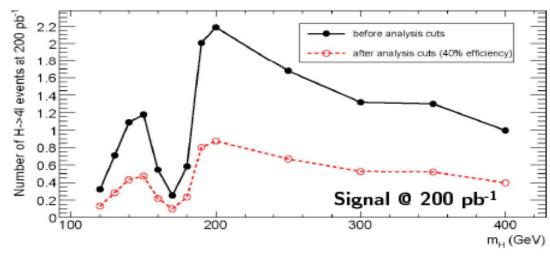


Which tuning to use?

How to constrain fragmentation function from data?

$H\rightarrow\gamma\gamma$ in the early going ...

HSG1



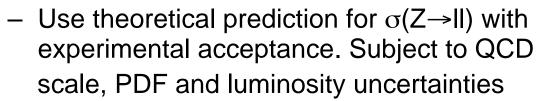
With 200/pb, we can exclude 6-8 times SM σ x BR (H $\rightarrow \gamma \gamma$) Statistic and systematic errors to be further investigated

HSG2

$H \rightarrow ZZ(*) \rightarrow 41$ with 200/pb

Process	$\sigma \times BR (pb)$	Events	4 leptons	4 leptons
			no p_T , η -cut	with $ ho_{T}$, η -cut
Signal (200 GeV)	10.9 ⋅10 ⁻³	2.1	2.1	0.9
ZZ	~16	3200	20	3
$t\bar{t}$ (1-I filter)	220	44000	650	25
$Z(\rightarrow II)bar{b}$	40	8000	80	7
$Z \rightarrow II$	2 · 1349	2 - 270000		~ 20

- Small number of events
- Loose cuts
- Work topics divided according <4l or ≥4l final states
- understand data comparing against known processes estimated with MC and data driven methods


$H \rightarrow ZZ(*) \rightarrow 41$ with 200/pb

HSG2

ZZ→4I background estimation from

data

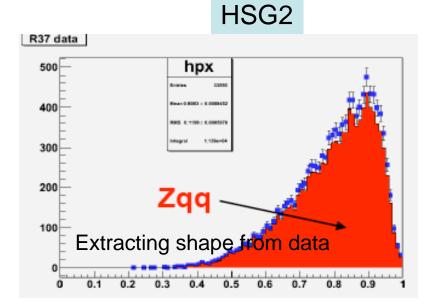
For 200/pb, number expected events small.
 Fitting side-band not possible

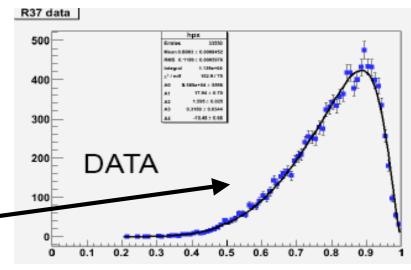
 Much of the systematics go away if you normalize ZZ→4I events to real data Z→II

$$N_{\text{estimated}}(ZZ \rightarrow II) = N_{\text{measured}}(Z \rightarrow II) \cdot \sigma(ZZ \rightarrow II)/\sigma(Z \rightarrow II)$$

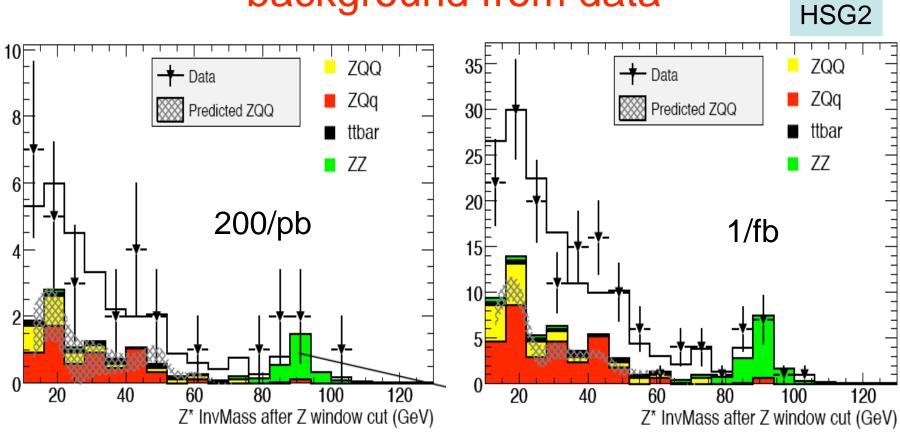
Progress on understanding theoretical systematics associated to the ratio. Need to address experimental issues associated to the ratio - in progress

Extraction of ZQQ (Z+jets)→4l background from data


 H→ZZ(*)→4I have 3 types of backgrounds


– Irreducible: ZZ(*)

Semi reducible: Z+X

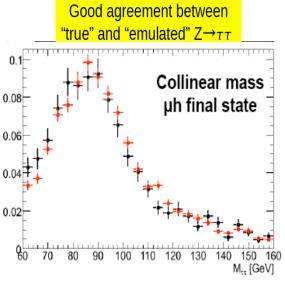

- Reducible: ttbar, W+jets, etc

- Zbb and Zcc dominate the Z+X contribution
 - At low m_H, could be 10-30% of ZZ*
 - But has large uncertainty. Needs to be extracted from data.
 - Measure Zqq in a statistically rich part of the phase space: make a Z→ee selection and plot qq→egmmas
 - Validate MC: Fix Zqq shape and normalization from data, by fitting R37 shower shape of the non-Z electrons.
 Extrapolate from egamma to loose electron using the MC to predict the Zqq contribution
 - Extrapolate into H→4l signal region

Extraction of ZQQ (Z+jets)→4l background from data

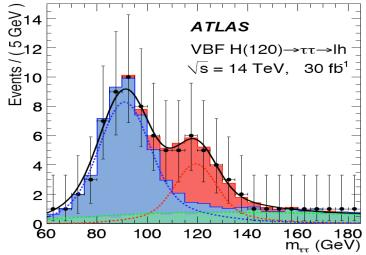
Method over-predicts ZQQ, tends to include ZQq as well. ZZ measurement also possible. ZQQ and ZZ background extractions possible even at 200/pb, subject to larger statistical uncertainties.

Background estimation from data


HSG4

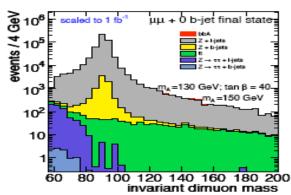
Examples: estimate $Z \rightarrow \tau \tau$ background from real data $Z \rightarrow \mu \mu$ Estimate W+jets backgrounds in Ih channel using same sign leptons

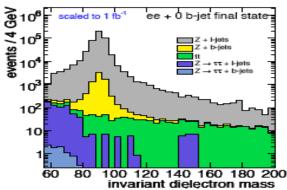
- $M_{\tau\tau}$ shape and rate affected by large systematics especially for Z with low p_{τ} :
 - $(\tau \tau$ almost back-to-back, missing P₊ balance may give large tails)
- Need to get $M_{\tau\tau}$ shape and rate from data, but it's difficult to select a pure

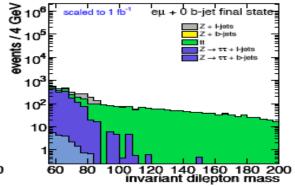

 $Z \rightarrow \tau \tau$ sample from data


- Build an "emulated" $Z \rightarrow \tau \tau$ sample:
 - Don't rely on simulation of Z production (cross-section, kinematic one underlying event, etc.), but $trust \tau$ simulation;
 - Select a pure sample of inclusive $Z \rightarrow \mu\mu$ events from data (easy!)
 - Replace reconstructed μ 's with simulated τ 's (same kinematics)

- Being generalized for "remove/replace" background estimation from data
- Not just for the Higgs WG. Useful to other groups as well






Background estimation from data

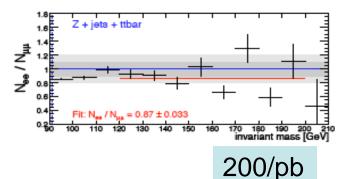
HSG4

 A→μμ: large backgrounds from Z+jets and tt. Shape extraction for the main backgrounds
 0 b-jet channel

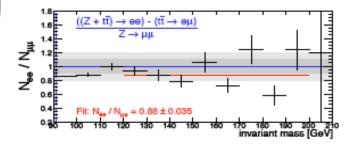
Background estimation with signal-free final states

- $BR(A \rightarrow ee) \simeq 0$
- $BR(Z \rightarrow ee) = BR(Z \rightarrow \mu\mu)$
- $BR(t\bar{t} \to ee) = BR(t\bar{t} \to \mu\mu) = BR(t\bar{t} \to e\mu)$

⇒ Strategy:


- **1** Measure $\mu\mu$, ee and $e\mu$ final states
- 2 Estimate $\mu\mu$ background from ee final state (sum of Z+jets and $t\bar{t}$ contribution)
- **3** Additionally: $t\bar{t}$ contribution from $e\mu$

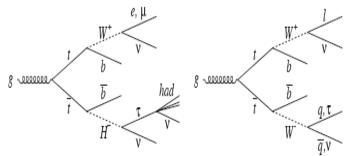
With 200/pb:


Normalization estimation: ~20%

Shape extraction: ~4%

ee control sample

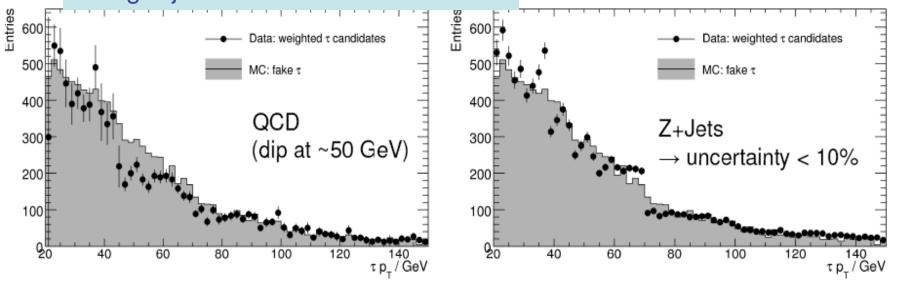
 Z_{only} estimate from ee and $e\mu$ samples


HSG5

H⁺→τν in early data

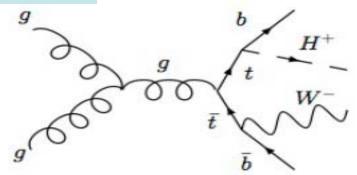
- Estimation of fake τ from light jets in ttbar (semileptonic) background to H⁺→τν
 - Fake τ major contributor to tt background.
 Needs to be well understood
 - Use "clean" QCD di-jet and Z→II+jets data to measure the fake-τ rate
 - Estimate τ-weight using fake rate and τ-ID efficiency

Signal

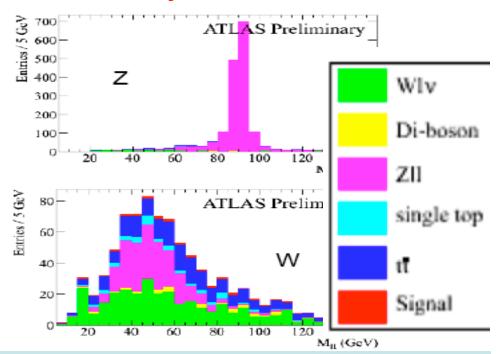

Main Background (tt̄)

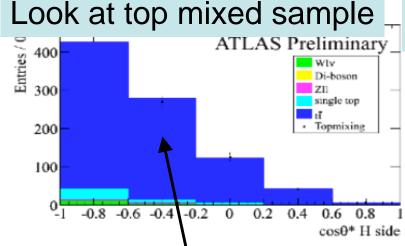
composition of tt background

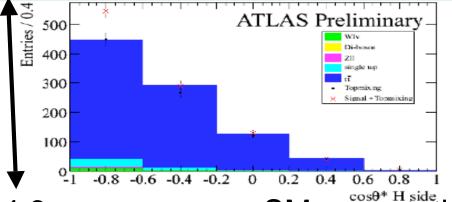
real $ au$ -jets	44%
fake $ au$ -jets from electrons	28%
fake $ au$ -jets from light jets	26%


 p_T spectrum of fake τ in ttbar events. Using rejection measured in data

In progress. Systematics to be understood


HSG5


H⁺→τν→Iννν in early data


Both the W and the H decay fully leptonically $(H \rightarrow \tau \upsilon \rightarrow l \nu \nu \nu)$,

Disentangling the backgrounds by normalization of MC to data in the W and Z side bands

Add signal to top mixed sample and repeat - assume BR(t→bH+) upper limit from Tevatron

Data consistent with SM within 10 4.6 or excess over SM expectation

Other Higgs WG activities not presented today

- Trigger studies for start up menus
- Update of Higgs cross sections and branching ratios for:
 - LHC energies in the early going
 - Up-to-date theoretical estimates
- Learning how to use the tools and contributing to the development these tools:
 - TAG based event skimming for Higgs D2PD and D3PD
 - Luminosity estimation for Higgs data samples
 - Usage of data quality flags in Higgs analyses
- Higgs D2PD and D3PD content definitions

Conclusions

- A lot of activities in the Higgs WG towards early data
- Data-driven background estimation methods being developed. In some cases methods useful to other groups (performance and SM)
- Efforts in various Higgs sub-groups towards common analysis strategies
- With 200/pb, expect:
 - 95% CL exclusion limit in H→WW (m_H ~ 160 GeV)
 - N x σ (SM) exclusion at 95% CL in other channels

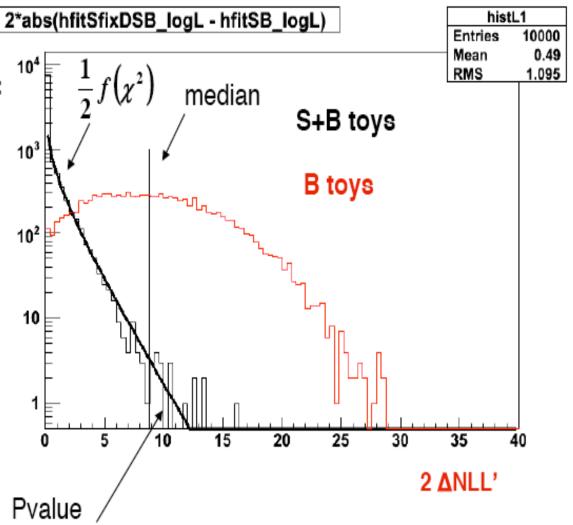
Backup

H→γγ exclusion limit in early data

1- Simulate experiments (toyMC) with only background (B toys) and signal+background (S+B toys),

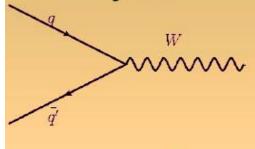
with $m(\gamma\gamma)$ follow the CSC parameterization:

- a crystalball for the signal, with mass resolution σ
- an exponential for the background .
- 2- Fit each toyMC with the number of signal Ns float and Ns fix to a certain hypothesis (ex. Standard Model H→γγ cross section)
- **3-** Evaluate:


$$\Delta NLL = \begin{cases} \ln L(fit(NS \ge 0, NB)) - \ln L(fit(NB), NS_{fix}) & \text{If NS} \le NSfix \\ 0 & \text{If NS} > NSfix \end{cases}$$

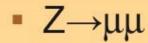
H→γγ exclusion limit in early data

4- The CL is related to the Pvalue:


$$CL=1-(Pvalu)$$

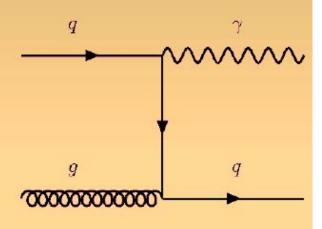
Pvalue is the fraction of S+B toys having a DNLL' value higher than the median

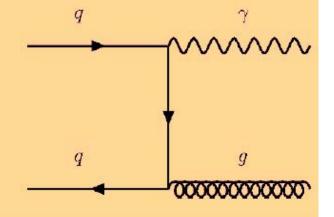
γ+jets is the closest thing to W+jets


W + jets

000000000000000000

Cross section (leptonic)


Total: 20.5nb



Total: 2.02nb

- Photon + jets (p_T>20GeV)
 - Total: 180nb

Photon + jets

Spring 2010 with a few pb⁻¹

- Mainly calibrations and understanding of the detector performance: Collaborations with Trigger and CP Groups will be important
 - Tight connections with Trigger/TDAQ Groups understand trigger performance (mainly LVL1);
 - Contribute to the understanding of lepton reconstruction: validation, robustness, first fake and efficiency studies from data of leptons and photons.
 - Contribute to calibration and alignment tasks.
 - Involvement in Jet, MET and b-tagging performance
 - Use control samples for detector performance (from performance groups)
- First physics analyses (ATLAS wide...):
 - Minimum bias
 - Lepton spectrum
 - Jet spectrum

— ...

Summer 2010 with a few tens of pb⁻¹

Expect somewhat improved detector/trigger performance

- Maintain connection with performance groups as stated in the previous page
- In addition: Lepton trigger and reconstruction performance, using tag and probe methods. Lepton/photon isolation and impact parameter understanding
- Understanding of fake and secondary lepton sources. Better understanding of Jet, MET, b-tagging and photon ID performance
- Involvement in calibration, alignment, data quality and luminosity estimation

Data-Driven Background Estimation

- Tight connection with SM and top groups
- Simple cut-based analyses
- Control samples for our background estimation from data minimal reliance on MC
- Optimized cut-analysis for exclusion limit settings
- Background cross-section measurements.

Trigger efficiency studies for semileptonic ttH (H→bb)

	e15_medium	e20_loose	e20i_loose	e25i_loose	mu15	mu20	mu20i_loose
LI	100%	99.9%	89.4%	88.3%	88.3%	87.0%	87.0%
L2	96.3%	95.1%	86.8%	85.4%	84.4%	81.7%	62.3%
EF	84.2%	92.9%	85.6%	84.2%	83.0%	80.6%	61.5%

Lepton trigger
efficiencies vary
between 85-90%,
except muon trigger at
L2, due to isolation
criteria

14 TeV

(10 TeV, 1031 trigger menu)

e20i_loose mu20 bjet	79.3%
e20i_loose mu20 bjet xe40	86.4%
e20i_loose mu20 3j180 xe40	86.1%
e20i_loose mu20 4j95 xe40	86.4%

Jet, b and MET triggers have low efficiencies, but can contribute in combination with lepton triggers

10 TeV

Efficiencies from signal samples at 10 TeV, 10³¹-trigger menu and 14 TeV, 10³⁴-trigger menu maintain similar efficiencies

	10 ³¹ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
electron trigger	85.6%	84%
muon trigger	80.6%	79%
combined lepton trigger	83.0%	82%

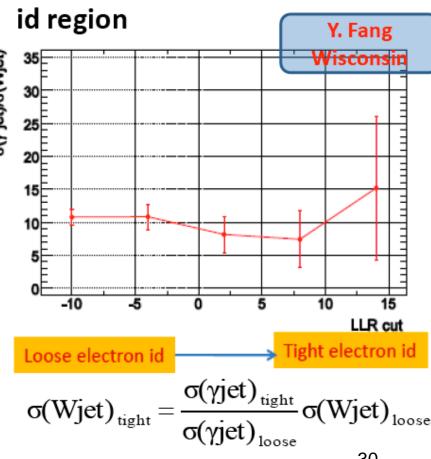
Early Analysis Planning

- With 2/pb batch
 - Jets (di-jet, multi-jets)
 - Minimum bias
 - $-J/\psi, Y$
 - Inclusive electrons/muons to W, Z, first MET
- With 20/pb batch
 - Measurements with photons
 - Top measurement
 - Tau ID
 - W and Z distributions and properties

— ...

Z→II background estimation in H→WW+0j

- H→WW→II+vv requires good understanding of MET, among other things
- Z/γ→II could be a major background if detector effects and mis-measurements lead to significant fake MET
 - Need to understand MET in the signal region, 15 < $M_{\rm II}$ < 70 GeV
 - Assuming good reconstruction of leptons in Z-peak region, MET from detector effects could be understood
 - Extract parameterization of MET in the Z-peak region to predict events in the signal region
 - Independent, data-driven background estimation of Z/γ→II in H
 →WW (→II+MET)+ 0j


In progress. Liu et al

W+jets background estimation for data: using γ+jets events

- It's important to check the impact of the trigger on this method
 - Under studying

y+jets fake rate is very similar to • Cross section ratio seems to be flat \rightarrow might be possible to extrapolate from loose electron

Acceptance Challenge

- Example of H→WW (→II+MET)+0j, 1j or 2j
 - Various groups involved in H->WW+0j analysis
 - Converge on common cut based selections for details see https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsWW
 - Trigger selection single lepton (e, m) trigger
 - Offline pre-selection: at one least lepton of p_T>10 GeV. Use lepton definitions of egamma and muon performance groups.
 - Higgs candidate pre-selection cuts. Designed to suppress backgrounds: ZW, bbar, Z, Z*
 - Final Higgs selection cuts: defines the signal box; include topological cuts, suppression addition backgrounds, e.g., ttbar:
 - Separately for 0j, 1j and 2j analysis
 - Various groups to run the analysis
 - Cut efficiencies/rejections should be consistent
 - Discuss our cut flow with SM group
 - Converge on common object selections with SM group

final analysis optimization will be done when real data will be available.

W+jets background estimation from data: using same sign events

Expected to be $\varepsilon' > \varepsilon$ due to charge correlation

Medium Electron

N _{jet}	$\sigma_{e^+e^-}^{\text{\tiny signal}}(\text{fb})$	$\sigma_{e^{\pm}e^{\pm}}^{\text{\tiny signal}}(\text{fb})$	$(\epsilon'/\epsilon)^{signal}$
0	683.13	226.20	3.02 ± 0.58
1	273.66	134.19	2.04 ± 0.60
2	109.89	57.32	1.92 ± 0.49
3	41.47	26.69	1.74 ± 0.35

oose Electron

N_{jet}	$(\epsilon'/\epsilon)^{ ext{signal}}$
0	1.13 ± 0.32
1	1.25 ± 0.34
2	1.28 ± 0.53
3	0.84 ± 0.48

- ε'/ε decreases as jet multiplicity increases due to less charge correlation (more gluon jets)
- ε'/ε decreases as electron quality decreases
- \rightarrow Measurement of ε'/ε from control sample (real data) is key of this method (ongoing)

$H \rightarrow ZZ(*) \rightarrow 41$ with 200/pb

- Final states with <4I (working with performance and SM groups
 - Z→II inclusive, Z→II+n jets, ttbar, WZ, ZZ
 - Lepton trigger and reconstruction efficiency
 - Tag and probe with $Z\rightarrow II$ and $J/\psi\rightarrow II$
 - Fake and secondary leptons
 - Z→II: inclusive or + n jets
 - QCD di-jets
 - Charge distribution in multi-lepton final states
 - Relevant for lepton pairing

$H \rightarrow ZZ(*) \rightarrow 41$ with 200/pb

- Final states ≥ 4I, background studies in the Higgs WG
 - Rely on the studies of <4l
 - e.g., 3l+good track or 3l+good cluster
 - Optimization of lepton isolation and IP cuts (no pileup or pileup)
 - Z-background measurement from data
 - Control sample studies on MC, preparing for data-driven extrapolation methods into signal region
 - ZZ-background
 - By normalization to real data Z→II events (in progress)
 - Disentangling ttbar, Zbbar, ZZ background contributions

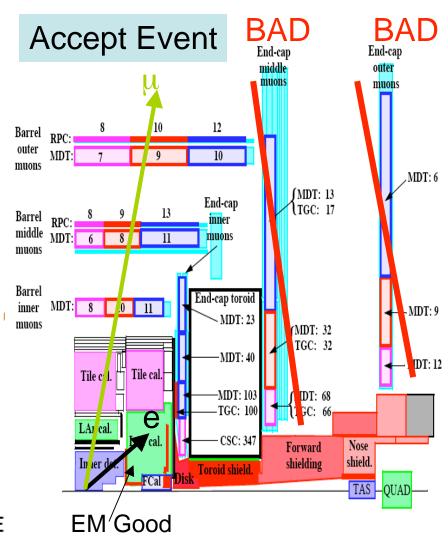
Exercise for putting DQ information

Nikolopoulos Tsuno

Artificially creates bad DQ.

Stick around "top-mixed sample" (run#108173) for testing.

- * Consider RUN 108173 (22594 LBs) (one LB = 1min.)
- * Flag approx. 10% of the LBs with some DQ Flags BAD
- * For simplicity use the first 10%
- * Only consider RED (bad) or GREEN (good)
- * All DQ Flags in COOL folder should be marked GOOD besides the ones below
- * COOL FOLDER OFLP200 database (tag name: "DetStatusLBSumm-TopMix1")

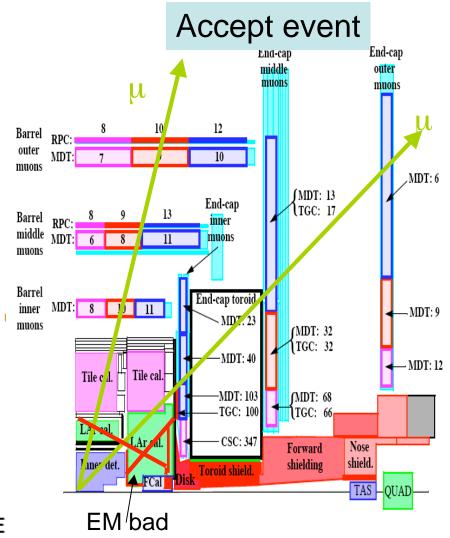

Case studies

Demonstration:

- 1) Z -> Il cross section measurement
- Acceptance for H->WW
- Acceptance for H->4 leptons

For simplicity, we only consider as DQ:

- 1) EM barrel (EMBA+EMBC)
 - -- barrel-electron ($|\eta|$ < 1.475)
- EM endcap (EMEA+EMEC)
 - -- endcap-electron ($1.375 < |\eta| < 3.2$)
- 3) MDT/RPC barrel (MDTB+RPCB)
 - -- barrel-muon ($|\eta| < 1$)
- 4) MDT/TGC endcap (MDTE+TGCE+CSCE
 - -- endcap-muon ($1 < |\eta| < 2.7$)


Case studies

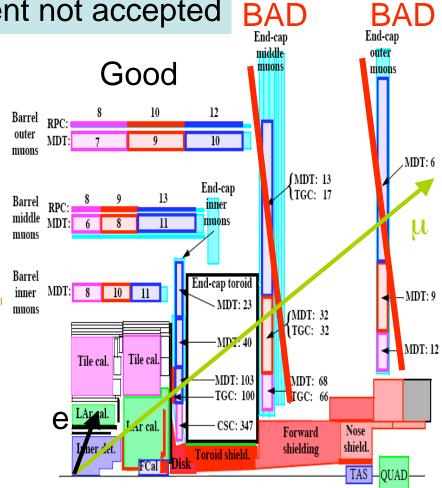
Demonstration:

- 1) Z -> II cross section measurement
- 2) Acceptance for H->WW
- Acceptance for H->4 leptons

For simplicity, we only consider as DQ:

- 1) EM barrel (EMBA+EMBC)
 - -- barrel-electron ($|\eta|$ < 1.475)
- EM endcap (EMEA+EMEC)
 - -- endcap-electron ($1.375 < |\eta| < 3.2$)
- 3) MDT/RPC barrel (MDTB+RPCB)
 - -- barrel-muon ($|\eta| < 1$)
- 4) MDT/TGC endcap (MDTE+TGCE+CSCE
 - -- endcap-muon ($1 < |\eta| < 2.7$)

Case studies

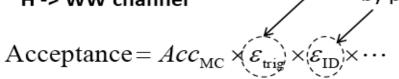

Event not accepted

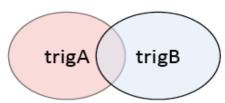
Demonstration:

- Z -> Il cross section measurement
- Acceptance for H->WW
- Acceptance for H->4 leptons

For simplicity, we only consider as DQ:

- 1) EM barrel (EMBA+EMBC)
 - -- barrel-electron ($|\eta|$ < 1.475)
- 2) EM endcap (EMEA+EMEC)
 - -- endcap-electron ($1.375 < |\eta| < 3.2$)
- 3) MDT/RPC barrel (MDTB+RPCB)
 - -- barrel-muon ($|\eta| < 1$)
- 4) MDT/TGC endcap (MDTE+TGCE+CSCE
 - -- endcap-muon ($1 < |\eta| < 2.7$)




Case study (2)

provided by trigger group

H -> WW channel

by performance group

Using DQ information, different luminosity is obtained for different regions.

A: single electron

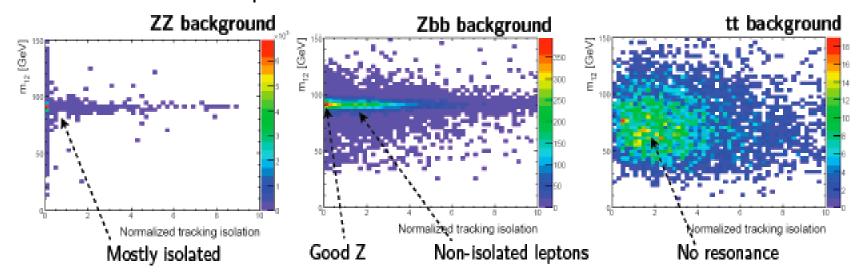
B: single muon

$$\mathcal{E}_{\mathrm{trig}} = \mathcal{E}_{\mathrm{trigA}} + \mathcal{E}_{\mathrm{trigB}} - \mathcal{E}_{\mathrm{trigA}} \cdot \mathcal{E}_{\mathrm{trigB}}$$

Accordingly, we have to calculate acceptance separately based on the geometrical configuration.

Tatsuya Masubuchi

	Acc.(%) (frac.)	LiveTime(sec)	$IntL (nb^{-1})$	Events	Good LBs	Bad LBs
no DQ flag	13.1 (100.)	1355160.0450	134782.14	1262005	22586	0
2e				i i		
EMB-EMB	1.69 (12.9)	1313280.0436	130618.11	1223016	21888	698
EMB-EME	0.404(3.08)	1286280.0427	127930.17	1197848	21438	1148
EME-EME	0.138 (1.06)	1299780.0432	129275.42	1210444	21663	923
2μ			I I	İ		
MDTB-MDTB	1.6 (12.2)	1299720.0432	129269.76	1210391	21662	924
MDTB-MDTE	1.28 (9.75)	1286220.0427	127923.65	1197787	21437	1149
MDTE-MDTE	1.22 (9.33)	1313280.0436	130617.26	1223008	21888	698
$e\mu$						
EMB-MDTB	3.64 (27.8)	1286220.0427	127924.51	1197795	21437	1149
EMB-MDTE	1.84 (14.0)	1299780.0432	129272.00	1210412	21663	923
EME-MDTB	0.218(1.67)	1272720.0423	126581.82	1185223	21212	1374
EME-MDTE	1.06 (8.1)	1286280.0427	127929.32	1197840	21438	1148


$H \rightarrow ZZ(*) \rightarrow 41$ with 200/pb

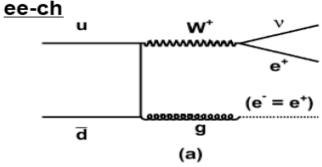
 For m_H < 200 GeV, additional backgrounds from ttbar and Zbb:

HSG2

40

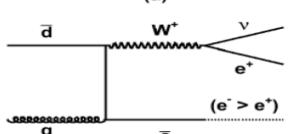
- To be studied by relaxing cuts on lepton isolation and impact parameter
- Use 2D distributions (m₁₂ versus isolation)
- Shape of (m₁₂ versus isolation) distributions for ttbar, Zbb and ZZ taken from MC
- Fit these shapes to data and extract the relative contributions

Method under study: for 200/pb statistics and systematic effects on the background shapes


W+jets background estimation from data: using same sign events

HSG3

 The idea is that predict W+jets contribution in the opposite sign $(N_{|+|-})$ signal region from same sign $(N_{|+|+-}, N_{|-|-})$)region


$$\mathsf{N}^{\mathsf{data}}_{\ell^+\ell^-} = (\mathsf{N}_{\ell^+\ell^+} + \mathsf{N}_{\ell^-\ell^-})^{\mathsf{data}} imes (\epsilon'/\epsilon)$$

Opposite sign fake rate
$$\epsilon' \equiv \frac{N_{\ell^+\ell^-}}{N_{\ell^+} + N_{\ell^-}}$$
 Same sign fake rate $\epsilon \equiv \frac{N_{\ell^+\ell^+} + N_{\ell^-\ell^-}}{N_{\ell^+} + N_{\ell^-}}$

Gluon jet is likely to fake to e+ or e- in same probability

 \rightarrow ϵ and ϵ ' should be same

Quark jet has charge correlation with W

→ The quark tends to have opposite charge of W charge, it is more likely to fake to opposite charge event

Measurement of ε'/ε from control sample (real data) is key of this method (ongoing)